10 research outputs found

    The pathophysiology of 'happy' hypoxemia in COVID-19

    Get PDF
    The novel coronavirus disease 2019 (COVID-19) pandemic is a global crisis, challenging healthcare systems worldwide. Many patients present with a remarkable disconnect in rest between profound hypoxemia yet without proportional signs of respiratory distress (i.e. happy hypoxemia) and rapid deterioration can occur. This particular clinical presentation in COVID-19 patients contrasts with the experience of physicians usually treating critically ill patients in respiratory failure and ensuring timely referral to the intensive care unit can, therefore, be challenging. A thorough understanding of the pathophysiological determinants of respiratory drive and hypoxemia may promote a more complete comprehension of a patient's clinical presentation and management. Preserved oxygen saturation despite low partial pressure of oxygen in arterial blood samples occur, due to leftward shift of the oxyhemoglobin dissociation curve induced by hypoxemia-driven hyperventilation as well as possible direct viral interactions with hemoglobin. Ventilation-perfusion mismatch, ranging from shunts to alveolar dead space ventilation, is the central hallmark and offers various therapeutic targets

    Conceptions of the pathophysiology of happy hypoxemia in COVID-19

    Get PDF
    In their letter-to-the-editor entitled "Misconceptions of pathophysiology of happy hypoxemia and implications for management of COVID-19", Tobin et al. (Respir Res 21:249, 2020) debated our views on happy hypoxemia in COVID-19 (Respir Res 21:198, 2020). We thank the authors for their interesting comments and alternative viewpoints, and we would like to clarify several important aspects raised

    The prognostic value of cardiac biomarkers and echocardiography in critical COVID-19

    Get PDF
    Background: Early risk stratification is crucial in critically ill COVID-19 patients. Myocardial injury is associated with worse outcome. This study aimed to evaluate cardiac biomarkers and echocardiographic findings in critically ill COVID-19 patients and to assess their association with 30-day mortality in comparison to other biomarkers, risk factors and clinical severity scores.Methods: Prospective, single-center, cohort study in patients with PCR-confirmed, critical COVID-19. Laboratory assessment included high sensitive troponin T (hs-cTnT) and N-terminal pro-brain natriuretic peptide (NT-proBNP) on admission to ICU: a hs-cTnT >= 14 pg/mL and a NT-proBNP >= 450 pg/mL were considered as elevated. Transthoracic echocardiographic evaluation was performed within the first 48 h of ICU admission. The primary outcome was 30-day all-cause mortality. Predictive markers for mortality were assessed by ROC analysis and cut-off values by the Youden Index.Results: A total of 100 patients were included. The median age was 63.5 years, the population was predominantly male (66%). At the time of ICU admission, 47% of patients had elevated hs-cTnT and 39% had elevated NT-proBNP. Left ventricular ejection fraction was below 50% in 19.1%. Elevated cardiac biomarkers (hs-cTnT P-value < 0.001, NT-proBNP P-value = 0.001) and impaired left ventricular function (P-value = 0.011) were significantly associated with mortality, while other biomarkers (D-dimer, ferritin, C-reactive protein) and clinical scores (SOFA) did not differ significantly between survivors and non-survivors. An optimal cut-off value to predict increased risk for 30-day all-cause mortality was 16.5 pg/mL for hs-cTnT (OR 8.5, 95% CI: 2.9, 25.0) and 415.5 pg/ml for NT-proBNP (OR 5.1, 95% CI: 1.8, 14.7).Conclusion: Myocardial injury in COVID-19 is common. Early detection of elevated hs-cTnT and NT-proBNP are predictive for 30-day mortality in patients with critical COVID-19. These markers outperform other routinely used biomarkers, as well as clinical indices of disease severity in ICU. The additive value of routine transthoracic echocardiography is disputable and should only be considered if it is likely to impact therapeutic management

    Myotonic dystrophy type 1 as a major risk factor for severe COVID-19?

    No full text
    The coronavirus disease 2019 (COVID-19) pandemic is challenging health care systems worldwide. People with myotonic dystrophy type 1 (DM1) represent a high-risk population during infectious disease outbreaks, little is known about the potential impact of COVID-19 on patients with DM1. We studied the clinical course of COVID-19 in three hospitalized patients with myotonic dystrophy type 1 or Steinert's disease, between April 1, 2020-April 30-2020. All three had advanced Steinert's disease receiving non-invasive nocturnal home ventilatory support. Two of them lived in a residential care centre. Two patients had a limited respiratory capacity, whereas one patient had a rather preserved functional capacity but more comorbidities. Two out of three patients were obese, none of them had diabetes mellitus. Two patients received hydroxychloroquine. Despite maximal supportive care with oxygen therapy, antibiotics, intensive respiratory physiotherapy and non-invasive positive pressure ventilation, all three patients eventually died due to COVID-19. Our case series of three patients with DM1 admitted for COVID-19 confirms that they are at high risk for severe disease and poor outcome. Clinical trials are needed to define best practices and determinants of outcomes in this unique population

    Electric field induced birefringence in nonaqueous dispersions of mineral nanorods

    No full text
    Lanthanum phosphate (LaPO4) nanorods dispersed in the non-aqueous solvent of ethylene glycol form a system exhibiting large intrinsic birefringence, high colloidal stability and the ability to self-organize into liquid crystalline phases. In order to probe the electro-optical response of these rod dispersions we study here the electric-field-induced birefringence, also called Kerr effect, for a concentrated isotropic liquid state with an in-plane a.c. sinusoidal electric field, in conditions of directly applied (electrodes in contact with the sample) or externally applied (electrodes outside the sample cell) fields. Performing an analysis of the electric polarizability of our rod-like particles in the framework of Maxwell–Wagner– O’Konski theory, we account quantitatively for the coupling between the induced steady-state birefringence and the electric field as a function of the voltage frequency for both sample geometries. The switching time of this non-aqueous transparent system has been measured, and combined with its high Kerr coefficients and its features of optically isotropic ‘‘off-state’’ and athermal phase behavior, this represents a promising proof-of-concept for the integration of anisotropic nanoparticle suspensions into a new generation of electro-optical devices
    corecore